
AGILE HARDWARE

DEVELOPMENT APPROACHES

APPLIED TO SPACE HARDWARE

by

Todd Mosher, Ph.D.: Vice President of Engineering, AIAA Associate Fellow

James Kolozs: Staff Systems Engineer

Carissa Colegrove: Senior Systems Engineer

Erica Wilder: Program Manager

Updated 26 March 2024

Agile Hardware Development Approaches Applied to Space Hardware | 2

The Agile software methodology, commonly

implemented using the Scrum framework, is a proven

and popular approach to software development both

inside and outside the aerospace industry. But is Agile an

effective approach for developing space hardware? At

first glance, Agile-based approaches seem incompatible

with traditional space-hardware development methods,

which have relied on rigorous processes and a clear

development plan to reduce risk. Agile, however, is less

structured and more nimble in responding to deviations

from initial plans as the design matures. Because of

the commercialization of space and the speed at which

technology is evolving, traditional approaches can

limit innovation. By contrast, Agile’s advocates often

rally against strict, top-down, and overly structured

traditional development, which doesn’t take into account

the realities of changing product requirements and

an evolving market. ALTEN Technology has used both

methods and identified ways to get past the traditional-

vs-Agile debate by blending the approaches for space

and nonspace projects. Integrating these two approaches

to multidisciplinary problems that have hardware and

software elements, such as satellites, combines the

benefits of both. ALTEN Technology implementation uses

the overall structure provided by traditional approaches

with the flexibility and accountability of Agile methods

to perform daily and weekly execution. This paper

describes the steps required to transform the traditional

space-hardware development process into one that

uses Agile as part of its daily execution. This approach

has been validated through development projects with

several clients in the space community, including MMA

Design and Spaceflight Industries, as well as other large,

traditional aerospace companies.

Space projects are completed in phases, as shown in

Figure 1. Over the years the government has used letters

to designate its various phases (A, B, C, D, E) or numbers

(0, I, II, III). However, as shown in Figure 1, the phases have

similar definitions and usually end in a milestone review

(SRR, PDR, CDR, etc.). More detailed descriptions of the

traditional process and the phase descriptions can be

found in [1–3].

This phased approach and the Gantt charts that

accompany them are sometimes referred to as waterfall

processes. The detailed schedules attempt to lay out

every step in a project, including every milestone and

every delivery date. Critics claim that these schedules

are always wrong [4]. The assertion is that the charts are

inaccurate the instant they are completed because most

projects are too dynamic to successfully capture the

actual schedule in real time.

The Agile Manifesto [5] has changed how a great many

organizations develop and deliver software. Its success

has inspired the product development industry to

experiment with extending its principles to hardware

design projects. However, there is often an incorrect

assumption that applying Agile is synonymous with

merely using its specific methodologies, like Scrum. As

many have found [6–10], applying Scrum to integrated

hardware and software systems is not straightforward.

However, we have found that the underlying values

and principles of Agile (see Appendix) can not only be

successfully applied to integrated systems but also are

an improvement on existing hardware development

processes such as traditional systems engineering and the

classic waterfall process.

EXECUTIVE SUMMARY INTRODUCTION

Agile Hardware Development Approaches Applied to Space Hardware | 3

FIGURE 1. TRADITIONAL

GOVERNMENT

PROGRAM LIFE CYCLE

From our perspective, hardware design involves mechanical

and electrical engineering. Although they require different

disciplines and skills, mechanical and electrical design have

similar product development processes, manufacturing

costs, and lead times. In this sense, they are more similar to

each other than to software (see Table 1). These differences

with software are the reasons why attempts to apply Scrum

to hardware development have met with resistance and

difficulties [8], [9].

Despite the differences, the enthusiasm and success of

our Agile software teams encouraged us to reexamine our

hardware development process to determine whether it

could benefit from Agile methods. In particular, we were

interested in enabling integrated product development

teams, those with both hardware and software, to adopt

Agile practices.

The complexity and integration of modern products

demand a coordinated product development effort rather

than one design methodology for hardware and another

APPLYING AGILE TO

HARDWARE PROJECTS

for software. We have found that it is possible to combine

traditional methods of product development for project

structure with Agile methods for project execution. This

provides us with a number of benefits:

 ■ Faster product development

 ■ Higher quality deliverables

 ■ Continuous risk reduction

 ■ Enhanced collaboration both within the development

team and with stakeholders

 ■ More transparent and accurate project status

 ■ Enhanced accountability at all levels

 ■ Timelier issue identification and resolution

Agile Hardware Development Approaches Applied to Space Hardware | 4

TABLE 1. KEY DIFFERENCES BETWEEN HARDWARE AND SOFTWARE DESIGN FROM AN AGILE PERSPECTIVE

Attribute Hardware (Mechanical and Electrical) Software

General Process ■ Design, Refine, Prototype, Test
 ■ Create Test, Implement Code, Refactor

 ■ Repeat

Productivity

 ■ Production requires drawing creation, quotes, building, and assembly.

 ■ Production may take days to months, depending on the complexity of the
product.

 ■ Note: Rapid prototyping techniques decrease duration but are still time-
consuming relative to software.

 ■ “Production” requires compiling code to

create an executable or image.

 ■ “Production” takes on the order of minutes

to hours.

Component and

Testing Costs

 ■ Prototype costs can be high (especially good quality prototypes).

 ■ In addition to labor, testing costs typically include custom test and

production equipment, plus assembly and packaging

 ■ There are few or no parts or distribution

costs.

 ■ Testing costs are primarily labor.

Modularity

 ■ There is a high degree of integration on most products to minimize size,

weight, and therefore cost.

 ■ Modularity is usually designed only for known changes/upgrades.

 ■ High modularity is encouraged as a

best practice because size, weight,

and computing cost are generally not a

competing constraint.

Cost of Change

 ■ Most changes become exponentially more difficult to implement the
later in a project they occur (especially when they affect production or

test equipment).

 ■ If well-architected, the cost of change is
mostly stable over a project.

 ■ Labor is the only cost.

Team Makeup
 ■ Team members are likely to be specialized.

 ■ Skills often not interchangeable.
 ■ Many skills are interchangeable.

Surprisingly, the core of Agile—the Agile Manifesto (see

Appendix)—does not describe how to implement it. It is a

set of values and principles that can cut across all aspects

of product development. There are various frameworks

and methods used by software teams to implement Agile,

the most popular of which appears to be Scrum [11].

In addition, lean principles, which have much in common

with Agile, have made their way out of the manufacturing

world and into product development [12]. In fact, lean has

also morphed into a new approach to start-up product

development called lean startup [13]. ALTEN Technology

has embraced many lean startup principles, primarily

encouraging clients to adopt the approach of a minimum

viable product (MVP) as their initial design iteration and to

minimize requirements to what is absolutely necessary.

What is currently lacking is practical guidance for

how any company or project can start implementing

Agile principles without upending their entire product

development process. We have reviewed our own

IMPLEMENTATION OF AGILE

processes and identified those that have had the most

impact without disrupting the overall structure of a

traditionally phased product-development approach.

The Agile methods, or tools, that we describe are

primarily based on those advocated by Scrum and lean

product development.

Using Agile tools and techniques during project

execution, we keep projects and team members moving,

communicating, and aligned. The tools also help us ensure

that our stakeholders have complete visibility into our

progress and facilitate continuous improvement.

In this way, we actively reduce risk and deliver value

to stakeholders on a regular basis. The tools are an

important step toward implementing Agile on a larger

scale, both within projects and across the enterprise.

Although we use a variety of Agile tools and techniques

(hereafter referred to as tools), those that have the most

impact are the following:

Agile Hardware Development Approaches Applied to Space Hardware | 5

 ■ Incremental Development. Break up a phase into

multiple increments (called “sprints” in Scrum),

typically 2–4 weeks long. Plan and run each phase

like a miniature project. Key activities include sprint

planning, sprint review, and sprint retrospective.

 ■ Visual Task Boards. Take all the tasks planned for a

sprint, and visualize them on a shared board, either

physical or virtual. Ensure that all team members and

stakeholders have access. Break work up into small

chunks, and have a clear definition of “done.” Work

toward completed features.

 ■ Daily Stand-ups. Hold daily quick coordination

meetings. Get everybody synced up, and determine

dependencies and any necessary follow-up. Identify

and resolve issues quickly.

 ■ Demonstrate Value Often. Reduce risk and show that

tangible progress is being made. Deliver something

of value at every increment review, preferably a

demonstration of a working product.

FIGURE 2. RELATIONSHIP OF THE RECOMMENDED AGILE TOOLS IN THE CONTEXT OF A PHASED PROJECT

Sprint

Planning

Sprint

Review

Sprint

Retrospective

Agile Hardware Development Approaches Applied to Space Hardware | 6

INCREMENTAL DEVELOPMENT

A key characteristic of Agile project execution is breaking

up the traditional phased approach into smaller, more

manageable increments. The difficulty of a long- duration

phase is that the work details are lost, and actual status is

obsolete almost immediately once the phase starts. With

incremental development, we take a large and ungainly

phase and break it up into “sprints.”

Each sprint is run like a miniature project with a defined

scope and goals with a set of tasks that need to be

accomplished. Not only does the team get a regular sense

of accomplishment but the stakeholders also receive

tangible value more often. By prioritizing features, risk is

reduced earlier, and core features are emphasized, leading

to a clearer understanding of project goals. Feedback is

encouraged and can be incorporated before it becomes

too expensive to implement.

There are three key meetings that bound and define

a sprint: sprint planning, sprint review, and sprint

retrospective.

Sprint Planning

The sprint planning meeting is used to start a sprint

and, essentially, to create a miniature project plan for

the sprint. All team members participate, and the plan is

approved by the relevant stakeholders. Team members

work together to determine the following:

 ■ Sprint goal(s)

 ■ Sprint duration

 ■ Prioritized approved features and tasks

The goal of each sprint is to demonstrate something

tangible during the sprint review. Preferably, the goal is

to produce a set of features and related functionality. The

initial focus is on high-risk aspects of the design and core

functionality; this way, we are actively reducing risk and

building a good framework for the rest of the product.

Sprints iteratively build functionality to support an

integrated prototype demonstration, as described in the

Demonstrate Value Often section.

Goals are not tasks! A poor goal for a sprint is “Work on

mechanical design.” That is a high-level task. A good sprint

goal for a mechanical project is “Demonstrate prototype

design of the housing.” There can be multiple sprint goals.

Many recommend a sprint duration of one to four weeks.

We do not strictly advocate a specific sprint duration

for hardware or software; this is left to the project team

to decide. We find that two weeks works well for many

projects. We also recommend maintaining a consistent

sprint duration to help establish a project rhythm. If a

project has multiple teams, sprints should be coordinated

among the teams to all begin and end at the same time.

However, if the sprint duration is not working well for the

team, it can be discussed and adjusted during the sprint

retrospective, which we will discuss later.

To achieve the sprint goal, a number of features or tasks

are completed (software engineers may prefer “user

stories”; we will use the more generic terms “features” and

“tasks” for the rest of this paper). These features and tasks

form a list of approved work that is assigned to a team

member, implemented, reviewed, and completed.

Features and tasks are defined by the team. They are

brainstormed at a high level as a set of features that must

be implemented to achieve the phase goal. The complete

feature set is called the backlog. At the sprint planning

meeting, the team determines which features to include

in the sprint to support the sprint goals. If necessary,

the features are broken down into more detailed tasks

that can be completed within a few days. In addition, any

unfinished tasks from the prior sprint are automatically

pulled into the current sprint.

It is important that this list of approved features and tasks

be prioritized. Prioritization is based on dependencies, risk

reduction, or anything else the team deems important.

The visual task board, once set up with prioritized,

assigned tasks, is used to track task progress throughout

the sprint. Figure 3 represents this process.

Agile Hardware Development Approaches Applied to Space Hardware | 7

FIGURE 3. SPRINT PLANNING

During sprint planning, a goal is determined, tasks are moved from the

backlog to approved work, and the tasks are prioritized.

Sprint Review

The sprint review meeting closes out a sprint. It highlights

what happened in the sprint and demonstrates the state

of the design to the stakeholders. Although it is called a

review, it is not as formal as a gated review. Rather, it is a

more casual meeting to wrap up the current sprint before

continuing on to the next one.

Unfinished tasks will not necessarily be included in the

next sprints because new tasks may have a higher priority.

That is part of the value of sprints—they allow you to

stop, evaluate, and reprioritize as needed. A sprint review

covers the following high-level items:

 ■ Highlight progress and deliverables

 ■ Demonstrate and receive feedback

 ■ Discuss difficulties, new items, and next sprint plan

In some cases, the project stakeholders may have little or

no contact with the development team during the sprint.

The review provides an open and transparent setting

to present the team’s accomplishments as well as any

completed deliverables.

The most important activity in the sprint review is

the demonstration. In the Agile values and principles

referenced in the Appendix, there are multiple mentions

of delivering “working product.” The demonstration

shows the work produced. Projects with software compile

what they have, and the stakeholders can actually use

the software. Projects with hardware typically do not

have the option of demonstrating stand-alone working

hardware. However, given that sprints may be longer on

projects that involve hardware and that the definition

of “working product” can be fairly broad, there is plenty

that hardware teams can demonstrate to stakeholders.

Hardware working products include sketches, CAD

models, mock-ups, or working hardware.

Unresolved issues that arose during the sprint are

discussed in the sprint review and their resolutions

planned into the next sprint. Emergent behaviors or

properties of the system discovered as a result of the

demonstration are discussed and addressed. Issues such

as market changes and new or updated requirements are

also reviewed, new backlog items are created, and goals

are proposed for the next sprint.

The development team learns by putting a viable

demonstration together, and the stakeholders have

tangible evidence of progress. The stakeholders also get

a real feel for how the system works and the state of the

design. They also are able to provide feedback and direction

directly to the design team to ensure that everyone is

aligned with a common project vision at the end of each

sprint. This contrasts sharply with a typical formal design

review that covers months of work and tends to focus on

slides rather than on tangible proof of progress.

Sprint Retrospective

The sprint retrospective typically happens after the

sprint review, but the timing is flexible (it may occur

after the next sprint has started). The retrospective is

an opportunity for the project team to reflect on the last

sprint and identify ways to improve the team’s working

process so that they are more effective and the work is

more enjoyable. Not only can retrospectives help fine-

tune the process for a particular project, but they also

provide the chance to reflect on recent successes to

improve team cohesion.

Agile Hardware Development Approaches Applied to Space Hardware | 8

A retrospective is typically run as a time-boxed meeting

with the team (usually one hour). It is helpful to start

the retrospective meeting with a quick review of the

improvements identified in the previous retrospective

to determine whether the changes have been effectively

implemented.

After reviewing the previous retrospective action items,

the meeting focuses on the following questions:

 ■ What went well?

 ■ What didn’t go well?

 ■ What can we improve in the next sprint?

The first question is a chance to reinforce good practices

and to celebrate the team’s most recent victories. The

second question is used to identify problems and look for

solutions. The final question is treated in a much more

free-form manner, befitting its creative nature. Anyone is

free to call out suggestions. The end result is typically a list

improvements for the following sprint.

To give the proceedings a little structure and to make sure

everyone gets a chance to speak, it is typical to gather

answers to “What went well?” and “What didn’t go well?”

in a round-robin. Anyone can “pass,” but no one gets

skipped. When everyone is done saying “pass,” move on

to the next question. For the final question, anyone can

speak. A project is a team effort, and all input is valuable in

ensuring the success of the project.

Sutherland [4] suggests a final question to gauge team

happiness: “What is one thing that will make you happier

in the next sprint?” This question will often reveal people’s

deep-seated concerns about the project. Often these

are the same reactions associated with “What can we

improve?” but this proposed question may provide a

greater understanding of risk and priority.

VISUAL TASK BOARDS

Once a sprint has been kicked off with the sprint

planning meeting, the team will have a list of approved

and prioritized features or high-level tasks that need to

be accomplished to attain the sprint goal. This is a good

start, but the team needs a way to quickly communicate

what they are currently working on (in case there are

dependencies) as well as their status.

A visual task board is an effective way to track tasks and

communicate status. Visual task boards come in a variety

of formats and media. Like many, ALTEN Technology

originally used sticky notes on a wall. Later we moved

on to magnetic whiteboards. For some projects we used

Excel. We currently use the online digital tools Jira, Trello,

and Smartsheet. We prefer using a digital board because

the information is accessible anywhere and anytime with

a computer (stakeholders can review it offsite), digital task

cards are easy to revise (no erasing or crossing out), and

the cards retain their history.

Visual task boards help break features into smaller tasks.

Each task in a sprint should have a duration of a half day

to three days, and the board should explicitly define

what is needed for a task to be considered completed.

Tasks that are too big or inadequately defined may suffer

from the “80 percent” or “almost-done” syndrome, which

may inhibit quick progress and demonstration. Breaking

up tasks at this level takes practice, and it is common

for the team to complain or worry that they are being

micromanaged. However, the clear objectives, frequent

feelings of success, and easier status updates will soon

demonstrate the value of this approach.

Examples of high-level hardware tasks include:

 ■ Design the housing

 ■ Design the circuit board

If we break down the “Design the housing” mechanical

feature, it might produce the following list:

Design Housing (Feature)

 ■ Task–Review housing requirements

 ■ Task–Build skeleton model in CAD

 ■ Task–Rough in lid

 ■ Task–Rough in base

 ■ Task–Decide on housing materials

Agile Hardware Development Approaches Applied to Space Hardware | 9

 ■ Task–Search for and select hinge

 ■ Task–Search for and select latch

 ■ Task–Finite element analysis for lid

 ■ Task–Tolerance analysis

 ■ Task–Lid refined model

 ■ Task–Base refined model

 ■ Task–Model interface

 ■ Task–Design review

 ■ Task–Update models

 ■ Task–Create drawings

 ■ Task–Review drawings

 ■ Task–Release models and drawings

If we break down the “Design the circuit board” electrical

feature, it might yield the following list:

Design Circuit Board (Feature)

 ■ Task–Review PCBA requirements

 ■ Task–Component selection

 ■ Task–Layout

 ■ Task–Review layout

 ■ Task–Design the power schematic

 ■ Task–Design the communications schematic

 ■ Task–Run a SPICE analysis

 ■ Task–Review circuit

 ■ Task–Schematic updates

 ■ Task–Breadboard

 ■ Task–Update layout

 ■ Task–Bill of materials (BOM)

 ■ Task–BOM review

 ■ Task–Release files

The required tasks for each feature can be staggered in

different sprints. There are many benefits to breaking up

the work using this approach:

1 We have a way to visualize the amount of work required

to complete a feature of interest;

2 Each task is easy to understand by the team members,

project leads, and stakeholders;

3 Each task will take anywhere from half a day to a

few days;

4 Everyone gets a sense that things are moving along

when a task is completed.

5 It is easy to determine whether a task is completed.

When using a visual task board, we recommend creating

a card for every task—cards are the workhorses of the

visual task board. An example is shown in Figure 4. Each

task is represented by a single card. Clients and projects

may have different formats for their cards, so some

content tailoring may be required.

FIGURE 4. EXAMPLE OF A TASK CARD

Agile Hardware Development Approaches Applied to Space Hardware | 10

As a starting point, we set up cards with the following fields:

 ■ Title—This is a short task name.

 ■ Description—This is a more detailed description of the

task.

 ■ Owner—This is the singular person responsible for

completing the task. Some tasks may require multiple

people’s involvement. However, only one team member

is responsible for implementing it successfully and

reporting on it. This is important to avoid ambiguity.

 ■ Subtasks—Cards that are more involved may benefit

from having subtasks to track incremental progress.

 ■ Acceptance Criteria—This may be the most important

field because it provides everyone with the same

definition of “done.” There may be multiple acceptance

criteria for a card. The card’s independent reviewer

compares the work output against the acceptance

criteria to determine whether the task is complete.

Once the content and utility of a card are defined,

consider the following optional fields:

 ■ Estimate (optional)—The owner’s task duration

estimate. This is useful to roll up on digital boards into a

sprint-level work estimate.

 ■ Discipline (optional)—The discipline(s) required to

complete the task. This is particularly useful for large

integrated projects.

 ■ Other Tags (optional)—Project-specific fields. Note

that each additional field increases the complexity of

creating and tracking cards, so include only if value-

added. Examples include tags for tracking to features,

requirements, documents, or other general tasks.

Once cards are filled out, they are placed on the task

board (if using a digital tool, the cards are created within

the board itself). Visual task boards visualize and enforce

workflows through columns. Each column represents

a specific workflow step, and each card should move

through every step in the workflow, except perhaps

“Blocked” (see Figure 5).

FIGURE 5. EXAMPLE OF A VISUAL TASK BOARD

Agile Hardware Development Approaches Applied to Space Hardware | 11

A typical starting point for columns are the following

(ordered from left to right):

 ■ Approved—These are the cards the team assigned to

the current sprint during the sprint planning meeting.

They are prioritized: the most urgent tasks and the

unfinished cards from the previous sprint are on top.

 ■ In Progress—These are the cards that the team is

actively working on. Whenever a team member starts a

new card, they transfer it from the “Approved” column

to “In Progress.” To limit inefficient multitasking, each

team member ideally works on one card at a time,

although this is not always possible.

 ■ Blocked—Cards can sometimes be blocked by external

factors. For example, a vendor’s late delivery of a

quote, or worse, of parts, could prevent the build of a

prototype. As soon as a team member feels they are

blocked on a task, they move the card to “Blocked.”

Tasks typically are not blocked for long because

the team rallies to help remove the impediment or

brainstorm alternatives.

 ■ In Review—Once the owner of a card has completed

the task, they move the card to “In Review” and assign

an independent reviewer (usually someone who did

not work on the card but is part of the project). The

reviewer (often the project manager, systems engineer,

or subsystem/discipline lead) reviews the completed

work against the acceptance criteria on the card. If

the work output meets the acceptance criteria, the

reviewer moves the card to the “Complete” column.

Otherwise, the card goes back to “Approved” for

additional work.

 ■ Complete—As stated above, cards in the “Complete”

column have passed independent review against their

acceptance criteria and are closed.

The team’s goal is to move all cards through the workflow

from “Approved” to “Complete” within a single sprint.

There are numerous direct and indirect benefits to using a

visual task board:

 ■ Team members like knowing what is expected of

them. The cards in the “Approved” column show

the anticipated workload and the acceptance

criteria for their tasks, so they know what needs to

be accomplished.

 ■ Team members do not need to pause to plan their

next task. They identified and prioritized their cards

in sprint planning, so they merely grab the next card,

pulling work instead of its being pushed to them.

 ■ Team members know when someone else is working

on something that might affect them.

 ■ The project manager can see at a glance the state of

the sprint. One can see what has been completed as

well as what is left to do without interrupting the team.

(Digital boards have a variety of tools that can extract

and visualize other information from the board as well.)

 ■ Stakeholders see immense value in the transparency

that a visual task board provides. Digital boards can

be shared with stakeholders, and the information on a

board can easily be summarized for a status review.

 ■ If a team member is overloaded or multitasking

between different cards, the facilitators can step in

and manage their workload by reprioritizing cards,

reassigning cards to another team member, or sending

some cards back to “Approved.”

 ■ Blocked tasks are directly visible to ensure they are

not dropped. They tend to be an eyesore on the board,

which encourages escalation and resolution.

 ■ Each completed task demonstrates visible and

incremental value for the stakeholders.

There is no ambiguity around whether a task is complete

(“mostly done,” “80 percent done,” “done, except,” or “really

done”). A task has either been independently reviewed

against its acceptance criteria or it has not. If it has, it is in

the “Complete” column and is closed. At sprint close, cards

that are still in the “Approved” column are moved to the top

of the backlog. When planning the next sprint, the team

may move them back to the “Approved” column or keep

them in backlog for future implementation.

DAILY STAND-UPS

Daily stand-up meetings are relatively popular throughout

product development and not just for those using Agile

techniques. However, they may also be the most abused

Agile tool in practice. Nominally, the point of a daily stand-

up is to make sure the team is in sync, accountable, and

able to communicate with one another. The team comes

together at a preset time every day and quickly shares their

progress, plans, and pains. Unfortunately, this is easier said

Agile Hardware Development Approaches Applied to Space Hardware | 12

than done. There are a number of best practices for keeping

stand-ups useful and running smoothly.

 ■ Set the proper cadence. Although this section is

introduced as a “daily” stand-up, some projects may

not have the urgency that requires a daily meeting.

Have the stand-up in the morning so that the previous

day’s accomplishments can be described and the plan

for the current day has meaning.

 ■ Limit the meeting to 15 minutes. Keep the stand-up

brief. A team of five to ten can perform a stand-up in

15 minutes, but it requires discipline. Larger teams may

require multiple stand-ups, grouped by discipline or

subsystem. In this case, the facilitators need to attend

all stand-ups to ensure continuity and communicate

cross-team considerations.

 ■ Use facilitators. Although the team members are

reporting to one another, facilitators promote

continuity and bring a higher-level project perspective,

such as ensuring that task priorities line up with the

bigger project picture.

 › For us, the project manager acts as “scrum master”

[11], facilitating meetings and keeping things on

track.

 › We also have a systems engineer on every project.

The systems engineer acts as the “product owner”

[11]; they are the stakeholder interpreter and have

the best in-house understanding of the product

requirements. They also go back to the stakeholders

for clarification of requirements when necessary.

 › Those familiar with Scrum may recoil at the

involvement of the project manager and systems

engineer as described above, but we have had

success with this implementation.

 ■ Have structured updates. Fifteen minutes is not much

time, so each team member must stay focused. To get

to the point quickly, each team member answers the

following questions:

 › “What have you done since the last stand-up?”

 › “What are you working on next?”

 › “Is there anything blocking your progress?” Or

“Is there anything you need from the other

team members?”

 ■ View the task board. This is not the time to

manipulate the task board, which should be done by

team members as they go. Rather, the task board is a

useful reference to understand how the “In Progress”,

“Blocked”, and “In Review” tasks are related to the

team’s stated work.

 ■ Book a follow-up meeting. Inevitably, things will

come up that require further discussion by some of

the team members. After the stand-up reporting is

complete, the facilitator ends the meeting. If further

discussion is required, having a prebooked follow-up

meeting provides those involved with a space and time

already scheduled to complete their thoughts and

exchange information.

Some bad habits can easily creep into and impact the

effectiveness of daily stand-up meetings.

 ■ Sitting. This seems obvious—the meeting is called

a “stand-up meeting.” Sitting starts to encourage

comfort and detailed discussions. One way we use

to enforce standing is to have a designated stand-up

area or room that contains a monitor for review of

the electronic task board but no chairs. A whiteboard

is also useful for taking notes or for the follow-up

meeting.

 ■ Task board is not up to date. The facilitators need to

encourage the team to keep the task board up to date

in real time as they begin and complete tasks.

 ■ Wandering off topic. Each person answers the three

stand-up questions—that is all. Detailed discussion,

brainstorming, and problem-solving are reserved for

the follow-up meeting or individual meetings later in

the day.

 ■ Too many people. ALTEN Technology limits

attendance to the core team. If there are specialists

who come and go in the project, designate one of

the core team members to report on their progress.

If team members are not getting value out of the

meeting, it is okay for them to leave or to split the

meeting into multiple stand-ups.

 ■ Overrunning time. This is the outcome of the items

listed above. If you find that your team is struggling to

stay within the 15-minute time slot, take a hard look

at how the stand-ups are running and check above for

ways to get back on track.

Agile Hardware Development Approaches Applied to Space Hardware | 13

DEMONSTRATE VALUE OFTEN

Our goal in product development is to deliver value to

the stakeholders as quickly and inexpensively as possible

while still creating a quality product. With traditional

development approaches, by the time the stakeholders

see a deliverable, many decisions may already have been

made and locked into the design. If the stakeholders

disagree with the design team’s decisions, it could lead to

arguments about changing requirements, scope creep,

and what the design “should” be. To avoid these problems,

we use the concept of “Demonstrate Value Often.”

 ■ Demonstrate—This is an actual demonstration of

the latest features at the end of a sprint. It does not

have to be a production-ready demonstration; any

demonstration of the product deliverables adds value.

 ■ Value—Lean proponents define project value this

way: “All project value is embodied in its deliverables.

A deliverable is any tangible and transferable item that

contributes to the commercialization of a new product.

A deliverable can be a document, a drawing, a decision, a

report, a prototype, a piece of hardware or software, etc.

Deliverables are outcomes of tasks and activities” [12].

 ■ Often—A demonstration is not a one-time occurrence;

it happens often. In fact, every sprint review is an

opportunity to demonstrate the state of the product.

This means that you are demonstrating value every

one to four weeks, depending on the chosen sprint

duration. Doing demos often provides regular

opportunities for face time with stakeholders. Demos

also provide alignment and allow for adjusting the plan

if necessary. We limit the amount of technical debt

(bugs and fragility) that can pile up before the next

demo. This forces us to make our designs more robust

and keep them that way throughout the project.

Demonstrating value often is accomplished through

sprint demonstrations and integrated prototype

demonstrations. Both types of demonstrations occur

as part of the sprint review. Regarding the definition of

“working product,” some authors claim that what you

demonstrate has to be “potentially shippable” [11].

We find that any demonstration of deliverables to

the stakeholders has value. We know from the earlier

examination of the differences between hardware

and software that hardware prototypes can have long

lead times and cost a lot of money. Therefore, although

software can deliver executable code at every sprint

review, hardware has to plan far in advance and budget

for every prototype. Therefore, hardware prototypes will

not occur as often as software prototypes.

Progress in hardware development can be demonstrated

with incremental deliverables in lieu of an anticipated

forthcoming full prototype. Hardware deliverable

demonstrations can come in many forms:

Mechanical

 ■ Brainstorming sketches

 ■ Renderings

 ■ CAD mockups

 ■ Detailed CAD

 ■ Analysis

 ■ Rapid prototypes

Electrical

 ■ Schematics

 ■ Analysis

 ■ Layouts

 ■ Breadboards

 ■ Developer kits

 ■ Prototype PCBAs

Each of the items above represents an incremental

improvement in the evolution and understanding of the

final product design without the time and expense of a

production-equivalent prototype. Demonstrating any

of the above to stakeholders as they are created has

tremendous value in obtaining feedback and alignment

without having to fully commit to the design. We also

reduce uncertainty and risk as we progress through the

various demonstrations of increasing capability.

Other

 ■ Vendor selection

 ■ Bill of material

 ■ Cost estimates

 ■ Lead time estimates

Agile Hardware Development Approaches Applied to Space Hardware | 14

While a demonstration of discipline-specific functionality is

valuable, in a product that involves multiple disciplines, the

most valuable demonstration is the integrated prototype

demonstration, where working software is demonstrated

on working hardware.

An integrated prototype requires planning at the phase

and sprint levels. Completion of software and hardware

features does not always coincide, so integrated prototypes

may not line up with sprints. However, ideally, you can

combine an integrated prototype demonstration with

a sprint review. A bit of high-level planning is required

We strive to have a physical mockup of the system in

progress to help with development and write software

on the target hardware (development kits are invaluable

for embedded systems). These form the basis of early

integrated prototypes. Integrated prototypes bring all of

the disciplines together to provide a regular system-level

demonstration. Projects are planned to ensure that the

team is integrating important features into prototypes

as they go. Each integrated prototype demonstration

showcases more and better features and functionality (see

Figure 7).

Integrated prototypes are important because they include

the thing that most people are not thinking about as

to make sure that an integrated prototype is ready for

demonstration to coincide with a sprint review (see Figure

6). There may also be a different stakeholder audience

interested in attending and participating in the integrated

prototype demonstrations. Colored bars in Figure 6

represent work on features for each discipline. Dashed

lines represent sprint reviews and demonstration of

those features. Diamonds represent integrated prototype

demonstrations. This is an area of applying Agile where

ALTEN Technology has fundamentally blended Agile with

more traditional methods and their associated milestones

and reviews.

FIGURE 6. SPRINT CADENCES ALIGNED WITH INTEGRATED PROTOTYPE DEMONSTRATIONS

they work on their individual components and areas

of expertise—the system. Only by building integrated

prototypes do we gain an understanding of the following:

 ■ As-built form, fit, and feel

 ■ System behavior

 ■ Interface compatibility

 ■ Cross-discipline interactions

 ■ Technical risk reduction

 ■ Emergent system properties and behavior

 ■ Common interpretation of the design direction

Agile Hardware Development Approaches Applied to Space Hardware | 15

FIGURE 7. INTEGRATED PROTOTYPE EVOLUTION ON AN INTERNET-CONNECTED WATER FILTRATION PRODUCT

ALTEN Technology has used this approach on several

projects and is highlighting the work with two clients, MMA

Design and Spaceflight Industries. Although these two

projects were considered subsystem contributions, ALTEN

Technology has demonstrated this methodology for large,

complex projects with great success.

MMA DESIGN

ALTEN Technology was asked to produce a motor

controller for one of MMA Design’s hardware

demonstrations. In less than a calendar year, ALTEN

Technology was asked to design, fabricate, assemble,

test, and deliver under a firm fixed-price contract an

engineering demonstration unit (EDU) and a flight

model (FM). Because of the aggressive schedule, a joint

design review, EDU delivery, FM delivery, and a program

final report were the primary deliverables with limited

milestone reviews for each one.

EXAMPLE AEROSPACE PROJECTS

Because this was a new client relationship, the ALTEN

Technology approach to Agile helped build trust by

demonstrating value often. Performing this development

on a fixed price budget, ALTEN Technology learned

many important lessons as captured via retrospectives

throughout the project and at its overall completion.

At times retrospectives were skipped because of an

aggressive schedule, but the team quickly learned that

this step in the process was extremely valuable, and the

retrospectives were reinstated. Scope management

and estimating were critical but difficult as the project

changed. Frequent client interaction was important and

was facilitated by the two companies being geographically

close. The greatest validation of this process was the

client feedback that “the controller continues to be a rock

of reliability” throughout the testing and delivery of the

overall product.

Hydraulic Prototype
Functional hydraulics with in-

line sensors installed: Get
sensor readings and add flow-

based expiration.

Plywood Prototype
Size/shape support frame

with: install, power-on, filter
replacement (calendar based)

“Alpha” Near-Final Prototype
‘Rev 1’ PCBA, sheet metal,

cables, and BOM. Add
internet comm., logging,

secondary screens.

“Beta” Fully-Functional Final
‘Rev A’ PCBA, sheet metal,

cables, and BOM. Mfg./
service screens, low

downtime, SW updates.

A R C H I T E C T U R E , I N D U S T R I A L D E S I G N
M A J O R C O M P O N E N T S

V E R I F I C A T I O N
L A U N C H D E S I G N

2 weeks +3 weeks +4 weeks +7 weeks

Plywood Prototype

Size/shape support frame

with: install, power-on, filter
replacement (calendar-based)

Hydraulic Prototype

Functional hydraulics with

in-line sensors installed; get
sensor readings and add flow-

based expiration

“Alpha” Near-Final Prototype

Rev 1 hardware: PCBA, sheet

metal, and cables;

add internet conn., logging,

secondary GUI screens

“Beta” Fully Functional Final

Rev A hardware, mfg./service

screens, reliability and final
GUI improvements, bug fixes

Agile Hardware Development Approaches Applied to Space Hardware | 16

At the beginning of this paper, we stated that

incorporating Agile tools would provide a number of

benefits. Let us recap how these specific tools support

these benefits:

 ■ Incremental Development. Large phases are broken

down into much more manageable one- to four-week

sprints. Higher risk items and core functionality are

worked on first, delivering value at a faster cadence.

There are more opportunities for stakeholders and

team members to get together and develop a common

understanding of the project and product. There are

a set of goals that are delivered and demonstrated at

the end of the sprint.

 ■ Visual Task Boards. The actual work is broken down

into half-day to three-day tasks, which are easy to

understand and have a clear definition of “done.” Every

task is independently reviewed for completeness and

quality. The status of all tasks is transparent and visible

to all team members and stakeholders. Each task has

a single owner for accountability. Blocking issues are

highlighted and addressed.

CONCLUSION

 ■ Daily Stand-ups. Stand-ups provide “real time”

status of what has happened on a project and where

it is going. The team gets synced up daily, and team

cohesion is enhanced. Blocking issues are brought up

and plans are made to resolve them.

 ■ Demonstrate Value Often. Something of value is

delivered and demonstrated at every sprint review.

This reduces risk and shows that tangible progress is

being made. Useful feedback is provided when there

is still time to incorporate it. The stakeholders and

team members move into alignment regarding how the

product works and the direction it is heading. The team

is accountable for producing value in every sprint.

As with all changes to organizations, it is best to start

with a small pilot project and a group of enthusiastic team

members. Make them part of the decision-making process

on how to incorporate these tools. Determine what works

best for your projects. Feel free to customize. We have

found these tools to be infectious. Once a team sees the

speed and improvements brought about by these tools,

they will spread the word for you.

These are just the first steps in incorporating Agile into

your integrated product development process. In addition,

Agile can also be applied at all levels of an organization (if

you view internal initiatives as projects, all of these tools

apply). Once you get a taste for Agile using these initial

tools, there is a greater world of Agile to explore and

incorporate into your business.

SPACEFLIGHT INDUSTRIES

Spaceflight Industries successfully launched a record

64 small satellites in a single launch for a variety of

commercial, government, and education customers; and

ALTEN Technology was fortunate enough to be a part of

this mission. ALTEN Technology supported development

of the launch sequencer that released the various

satellites into a Sun-synchronous orbit, which was the

largest ride-share mission to date on an American launch

vehicle. ALTEN Technology helped to troubleshoot some

challenges with this critical piece of mission hardware,

and again the Agile approach was valuable in defining the

scope of work and methodically completing it on a fast-

track schedule. ALTEN Technology also helped Spaceflight

Industries with the development of spacecraft avionics

hardware. In both cases, Spaceflight Industries was happy

with the ALTEN Technology Agile approach to completing

the work successfully and with an aggressive schedule.

Agile Hardware Development Approaches Applied to Space Hardware | 17

The Agile values and principles from the Agile Manifesto

are listed below [5]. The authors have added emphasis to

generalize to all product development, not just software.

AGILE VALUES

We are uncovering better ways of developing software

(products) by doing it and helping others do it. Through

this work we have come to value:

Individuals and interactions over processes and tools

Working software (product) over comprehensive

documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we

value the items on the left more.

AGILE PRINCIPLES

1 Our highest priority is to satisfy the customer through

early and continuous delivery of valuable software

(deliverables).

2 Welcome changing requirements, even late in

development. Agile processes harness change for the

customer’s competitive advantage.

3 Deliver working software (product) frequently, from

a couple of weeks to a couple of months, with a

preference to the shorter timescale.

4 Business people and developers must work together

daily throughout the project.

5 Build projects around motivated individuals. Give

them the environment and support they need, and

trust them to get the job done.

APPENDIX
6 The most efficient and effective method of conveying

information to and within a development team is face-

to-face conversation.

7 Working software (product) is the primary measure of

progress.

8 Agile processes promote sustainable development.

The sponsors, developers, and users should be able to

maintain a constant pace indefinitely.

9 Continuous attention to technical excellence and good

design enhances agility.

10 Simplicity—the art of maximizing the amount of work

not done—is essential.

11 The best architectures, requirements, and designs

emerge from self-organizing teams.

12 At regular intervals, the team reflects on how to

become more effective, then tunes and adjusts its

behavior accordingly.

Agile Hardware Development Approaches Applied to Space Hardware | 18

The authors would like to recognize the ALTEN

Technology team for being open to experimenting

with these new approaches and our various clients in

the aerospace, medical, and other markets we serve

who are open to the benefits delivered by the ALTEN

Technology Agile hardware development approach.

There are too many to name all the contributors, both

internal and external to ALTEN Technology, who have

influenced this work.

ACKNOWLEDGMENTS REFERENCES

[1] Brown, C. D., Elements of Spacecraft Design, AIAA

Education Series, AIAA, Reston, VA, 2002, pp. 13-17.
[2] NASA, NASA Systems Engineering Handbook, NASA SP-2016-

6105, 2016, NASA, Washington, DC, Chapter 3.

[3] Department of Defense, Systems Engineering Fundamentals,

Defense Acquisition University Press, Fort Belvoir, VA,

Chapter 2.

[4] Sutherland, J. Scrum, 2014, Crown Business, New York.

[5] Beck, K., Beedle, M. Bennekum, A. V., Cockburn, A.,

Cunnighman, W., et al., Manifesto for Agile Software

Development, 2001, viewed 9 November 2017, from http://
agilemanifesto.org.

[6] Backblaze, Application of Scrum Methods to Hardware

Development, 2015, Backblaze.com, viewed 9 November
2017, from https://www.backblaze.com/blog/wp-content/
uploads/2015/08/Scrum-for-Hardware-Development-V3.
pdf.

[7] Graves, E. “Applying Agile to Hardware Development

(parts 1-7)”, in Playbook Blog, viewed 9 November
2017, from https://www.playbookhq.co/blog/

agileinhardwarenewproductdevelopment.

[8] Ovesen, N., ‘The Challenges of Becoming Agile –
Implementing and Conducting Scrum in Integrated

Product Development’, 2012, PhD thesis, Department

of Architecture, Design, And Media Technology, Aalborg

University.

[9] Reynisdottir, P., ‘Scrum in Mechanical Product
Development – Case Study of a Mechanical Product

Development Team using Scrum’, 2013 PhD thesis,

Department of Product and Production Development,

Chalmers University of Technology.

[10] Thompson, K., Agile Processes for Hardware

Development, 2015, cPrime.com, viewed 9 November
2017, from https://www.cprime.com/resource/white-
papers/agile-processes-for-hardware-development.

[11] Schwaber, K. and Sutherland J.,‘The Scrum Guide’, 2017,
in Scrum Alliance, viewed 9 November 2017, from https://
www.scrumalliance.org/why-scrum/scrum-guide.

[12] Mascitelli, R., The Lean Product Development Guidebook,

2007, Technology Perspectives, CA.

[13] Ries, E., The Lean Startup, 2011, Crown Business, New York

[14] Rigby, D.K., Sutherland, J. and Noble, A., “Agile at Scale,”

Harvard Business Review, May-June 2018, pp. 88-96.

