
APPLYING AGILE TO
UNCREWED VEHICLE HARDWARE

DEVELOPMENT CHALLENGES

by

Stefan Elsener: Program Manager

James Kolozs: Staff Systems Engineer

Erica Wilder: Program Manager

UPDATE 26 March 2024

Applying Agile to Uncrewed Vehicle Hardware Development Challenges | 2

Robotics and uncrewed systems have reached a

convergence between legacy development strategies

in the aerospace and defense industries and rapid

commercial product development cycles. How will

developers meet the need for shorter schedules and

frequent product refreshes while preserving the reliability

of highly complex systems, all within demanding budget

constraints?

ALTEN Technology has demonstrated success combining

rigorous waterfall development planning with the

flexibility and speed of Agile Scrum daily execution. This

paper discusses applying these integrated practices

to recent robotics hardware development projects by

overcoming key challenges: organizing people, enhancing

collaboration, managing complexity, handling change, and

reducing risk.

By integrating Agile Scrum into hardware product

development, a team can successfully overcome these

common challenges to achieve the best version of their

product while minimizing cost and development time.

EXECUTIVE SUMMARY

Applying Agile to Uncrewed Vehicle Hardware Development Challenges | 3

INTRODUCTION

Agile has been actively used by software developers

for more than 20 years and is now being embraced

by hardware developers as well. Agile embodies an

underlying philosophy for software development

without regard as to how it is implemented. However, the

philosophy provides a set of core values and principles to

guide development.

AGILE VALUES

When it comes to values, the Agile Manifesto1 states the

following (emphasis added):

“We are uncovering better ways of developing software

(products) by doing it and helping others do it. Through

this work we have come to value:

Individuals and interactions over processes and tools

Working software (product) over comprehensive

documentation

Client collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we

value the items on the left more.”

The Agile values derived from the Agile Manifesto tell

us what values to fall back on when we are faced with a

difficult situation, and they guide our high-level thinking

about a project.

AGILE PRINCIPLES

The Agile Manifesto also provides a set of 12 principles

that describe in more detail the incorporation of Agile

values into a software development organization. We

have taken these principles, thought deeply about how

they apply to both hardware and software development,

and devised the following product development principles

based on Agile:

 ■ Demonstrate Value Often—The principle that

something of value is delivered and demonstrated

at every sprint review. This reduces risk and shows

tangible progress is being made. Useful feedback is

provided when there is still time to incorporate it.

The stakeholders and team members are aligned

about how the product works and the direction it is

heading. The team is accountable for producing value

in every sprint.

 ■ Embrace Change—The principle that it is impossible

to know all the requirements for a product up front.

There is a necessary amount of learning that will

occur during a project, both internally (project team

uncovering things about the system) and externally

(better understanding the market needs), but this does

not mean blindly embracing changing requirements.

We have to understand that changes cost money

relative to the budget and time relative to the

schedule. Any change must be justified. Not only can

requirements change, but the way we do product

development can change, even within a project.

Project change derives from the daily stand-ups, sprint

retrospectives, stakeholder feedback, and lessons

learned along the way.

 ■ Collaborative Empowered Teams—The principle

that we strive to include the entire engineering team

in how a project unfolds. We also strive to include

stakeholder input regularly throughout the project.

This keeps everybody focused on a common goal and

minimizes divergence of thinking. People work best

when they have the time, authority, and will to make

things happen. When you treat your people well,

respect their input, and give them the time and tools

Applying Agile to Uncrewed Vehicle Hardware Development Challenges | 4

FIGURE 1. INCREMENTAL DEVELOPMENT PROCESS3

to be successful, they will happily work hard for you.

Teams encourage a variety of ideas, serve as a check

and balance on individuals, facilitate self-review, and

create shared ownership of the project.

 ■ Technical Excellence—The principle to incorporate

technical excellence in all of your design and

development activities. Address bugs, issues, and

problems as soon as you find them; don’t leave them

for someone else to deal with later. Capture your

best practices and lessons learned, and distribute

the knowledge. Avoid non-value-added work.

Create templates, and preserve good examples so

that future work is done more efficiently. Regularly

refine your processes, tools, and templates. Tailor the

activities and deliverables of each project on a case-

by-case basis. There is no one-size-fits-all process in

product development.

INCREMENTAL DEVELOPMENT

Scrum is one of the most popular frameworks for

implementing Agile.2 However, it was created with

software in mind. Modified Scrum is our preferred

product development methodology based on Agile.

Why modified? After experimenting with “pure” Scrum

for hardware, we found it wasn’t 100% compatible.3

Other authors have found this issue as well.4-8 While

the changes are minor, they are important. In effect,

they boil down to incorporating sprints into an

overarching project plan and loosening the definition

of “working product” at the end of a sprint for

demonstration purposes.

Incremental development implements a key

characteristic of Scrum project execution by breaking

up the traditional product development phase into

smaller, more manageable efforts. The difficulty of a

long-duration phase is that the work details are lost

and the actual status is obsolete almost immediately

once the phase starts. With incremental development

(Figure 1), we take a large and ungainly phase and break

it up into sprints.

Each sprint is run like a miniature project with a defined

scope and goals for a set of tasks that need to be

accomplished. Not only does the team get a regular

sense of accomplishment, but the stakeholders receive

tangible, actionable value more often. Having an

incremental cadence and focus on collaboration across

all stakeholders addresses change in real time and avoids

a buildup of technical debt that might not be reconciled

until the next major design review. This overall approach

provides multiple benefits:

1 It facilitates team and stakeholder alignment.

2 It addresses issues quickly.

3 It provides transparency about project progress to

the stakeholders.

4 It facilitates continuous improvement of the product

and product development process.

5 It reduces risk.

6 It delivers value to stakeholders on a regular basis.

Sprint
Planning

Sprint
Review

Sprint
Retrospective

Applying Agile to Uncrewed Vehicle Hardware Development Challenges | 5

APPLYING AGILE

Our experience with applying modified Scrum to

uncrewed systems programs enables a high degree

of collaboration, delivering value continuously while

anticipating change and adjusting plans gracefully, at a

high standard of quality and capability. Every product

development effort encounters a variety of challenges

as it progresses. This paper will describe how application

of Agile principles via modified Scrum tools can help

tackle the key challenges faced by complex uncrewed

systems programs:

 ■ Organizing people is the challenge of estimating,

defining, and ramping up a project team.

 ■ Enhancing collaboration is the challenge of

coordinating multiple project teams, often

from different organizations, and making sure

everyone has a common understanding of the

product direction.

 ■ Handling change is the challenge of maintaining

respect for the project scope while being open to

changes that will improve the product or product

development process.

 ■ Managing complexity is the challenge of dealing with

multiple subsystems and disciplines, hundreds of

requirements and interfaces, and thousands of tasks.

 ■ Reducing risk is the challenge of understanding the

risks to the project and the product and having a plan

to deal with them.

Complex programs like those in the uncrewed systems

industry will face stumbling points during the product

development effort. The strategies described below

recommend pragmatic approaches based on Agile

principles to effectively assess, resolve, and move on from

these common challenges.

ORGANIZING PEOPLE

Most product development organizations have multiple

projects in play at any given time. Additionally, these

organizations are often beholden to a variety of

stakeholders with competing priorities (e.g., investors,

managers, clients, and vendors) and are limited by a fixed

pool of resources (e.g., staff, funding, budget, space, and

equipment). Planning for and organizing your team is the

first step to ensuring the project has the right foundations

to succeed.

To effectively plan for and ramp up team members, we

need to understand the scope, schedule, and skill sets

required for a project. Yes, Agile promotes self-organizing

teams, but the reality for smaller or highly mixed

programs is there is often competition for resources.

Providing a quantifiable plan up front helps decision-

makers prioritize work and resources most efficiently.

Some projects have the benefit of long durations

where existing team structures are well exercised and

processes are proven to be effective. However, most

projects are smaller and can benefit from Agile planning

to start nimbly and scale efficiently. When planning to

leverage Agile techniques in a hardware development

effort, determining the appropriate skill sets and

personalities required on the development team is

crucial. Considerations for technical expertise must be

weighed against personality traits and leadership styles

to optimize team member deployment at the right time

with enough backlog and preparation completed to

enable team members to be effective.

One way ALTEN Technology approaches project

management differently than traditional Scrum is our

definition of “self-organizing teams.” In an ideal project

CHALLENGES

Applying Agile to Uncrewed Vehicle Hardware Development Challenges | 6

world, you would have every required expert, at the precise

moment needed, to get all the work done efficiently with

no downtime. Reality often forces us into compromises to

demonstrate progress, establish confidence, and deliver

value to stakeholders as soon as possible, within the budget

and resource constraints placed on us. In this situation,

Agile principles guide us to ramp up quickly (Demonstrate

Value Often) to build a backlog of well-defined work,

which reduces the need for more experienced personnel

on every task, as long as the team structure (Collaborative

Empowered Teams) and support resources are available to

ensure technical excellence.

We find the most efficient approach to team organization

is to establish comfortable leadership ratios and drive

individual development tasks to the lowest resource level

possible given the task’s requirements for success. ALTEN

Technology’s Agile implementation promotes this method

of delegation to keep the doers on the team unblocked

and engaged at all times, while maintaining leadership

ratios at the minimum level required to keep project risk

manageable and resolve challenges quickly and effectively.

The key is to start with a framework that allows for change

and scalability, fully anticipating that as the project ramps

up, roles and available resources can and will change to be

most effective.

In our experience, small project teams of one or two

resources per discipline, or area of expertise, can generally

get by with a sole leader/doer or even a doer with the

appropriate project management or technical oversight

(Figure 2).

However, once a project team reaches three to five

resources per discipline, strong technical leads must be

identified and, more importantly, empowered to support

task planning and prioritization and serve as the subject

matter expert (SME) for that discipline. Additionally, once

a given discipline grows above five resources, an additional

“lead” is advantageous so as not to dilute the team’s ability

to fully define tasks, resolve issues in a timely manner, and

react to the needs of the project as it evolves (Figure 3).

FIGURE 2. EXAMPLE OF CORE TEAM STRUCTURE

Project
Coordinator

Project
Coordinator

Project
Coordinator

ME

Lead Systems
Engineer

Lead Systems
Engineer

Lead Systems
Engineer

SE

SE

SW

SW

SW

SW

SW

Assistant
Lead EE

EE EE EE

EE EE EE EE

Lead Software
Engineer

Lead Software
Engineer

Lead Software
Engineer

Lead Mechanical
Engineer

Lead Mechanical
Engineer

Lead Mechanical
Engineer

Lead Electrical
Engineer

Lead Electrical
Engineer

Lead Electrical
Engineer

Project
Manager

Project
Manager

Project
Manager

ME

ME

ME

ME

ME

Assistant
Lead ME

FIGURE 3. STRUCTURE

The core team provides a clearly defined structure as the team grows

ME

ME

ME

ME

EE EE EE

Applying Agile to Uncrewed Vehicle Hardware Development Challenges | 7

This scalable team structure sets the stage for effective

collaboration by defining roles and responsibilities.

Additionally, we monitor for trigger points where the team

may need to grow but always keep leadership and support

structures in mind to ensure our team’s effectiveness and

efficiency are maximized.

ENHANCING COLLABORATION

In today’s global economy with talent distributed around

the world, strategies for effective collaboration are more

important than ever. Many organizations rely purely on

reactive forms of communication to get by (i.e., emails or

conference calls as needed). ALTEN Technology prefers a

proactive communication approach to break down barriers

to collaboration and aggressively encourage team members

to communicate without delays. We use various tools

and techniques to encourage collaborative teams from

the start and ensure our project teams and partners are

communicating effectively.

Most of our programs include collaboration with our clients

(usually a product owner or prime contractor), other third-

party engineering service providers (much like ALTEN

Technology), and manufacturing partners and component

suppliers. ALTEN Technology uses Agile methods during

project execution to keep projects and team members

moving, communicating, and aligned. Tools such as visual

task boards help provide a central location to consistently

plan, assign, and track progress on project tasks. More

importantly, regularly scheduled gatherings promote

collaboration and ensure team members are accountable

to demonstrate value and deliver technical excellence to

our partners. In general, we subscribe to the following

cadence of important planning discussions, which Scrum

calls “ceremonies” or “events,” detailed below and shown in

Figure 4.2

(Organization leadership) Quarterly or annual product

road map planning

(Project leadership) Monthly project planning for

upcoming objectives (next two to three sprints)

(Project leadership and SMEs)

Biweekly sprint planning of detailed

tasks to meet upcoming sprint objectives

(Project team and stakeholders) Biweekly sprint

reviews to demonstrate completed tasks

(Project team) Biweekly sprint retrospectives—

may include key stakeholders if appropriate

(Project leadership and SMEs) Weekly status

updates with project stakeholders—and key

suppliers/vendors if needed to monitor progress

(Project team) Daily team standups

to identify and resolve issues and

ensure team members understand

priorities and next steps

FIGURE 4. PROJECT LIFE CYCLE ELEMENTS

Monthly

Project

Objectives

Planning
Quarterly to
Annual Road Map
Planning

Project

Cycle

Weekly
Progress
Updates

Daily Team
Stand-Ups

Execute
Sprint

Sprint
Planning

Sprint
Retrospective

Sprint
Reviews

Applying Agile to Uncrewed Vehicle Hardware Development Challenges | 8

Without close collaboration, there is the risk of missed

expectations between stakeholders and the project team.

Everyone, stakeholders and team members alike, has a

mental representation of what the product will be like

at the end, and rarely do these representations actually

align. The longer a project goes without resolving these

representations, the further they will deviate, which means

that when stakeholders see the first major prototype,

they may disagree about how it was “supposed” to look,

function, or interact. This often leads to a significant rework

or grudging acceptance of a subpar solution.

Our Agile principle of Demonstrate Value Often directly

addresses this issue. We do this via sprint reviews and

demonstrating anything tangible to the stakeholders during

these regular meetings (we prefer every two weeks). This

allows everyone to recalibrate their internal model of the

system so that any mismatches will come out in the sprint

review. We can then refine the direction during sprint

planning and the subsequent sprints. When the next

sprint review comes around, we are a step closer to the

final product, and everyone can see the progress based

on the prior feedback. This moves the focus of integrated

(and expensive) prototypes from seeing if they match

the stakeholders’ expectations to seeing how well the

design conforms to the requirements. Thus, the integrated

prototype should never be a surprise to the stakeholders

(save the “big reveals” for marketing presentations).

We have also found regular integration meetings to be

extremely helpful in finding and fixing design problems

before they become expensive prototype issues. We

completed an uncrewed vehicle project where we were

in charge of mechanical packaging of components but

another company was tasked with designing the printed

circuit board assemblies. Given the extremely tight

packaging constraints and the fact we had never met the

other company, we had to ensure everything would fit.

Integrating the other company’s CAD models into our

designs was obvious, but what about the details? Where

is the primary coordinate system? Who is in charge of the

profile and hole locations? What about component heights

and routing of cables and connectors? How will we deal

with changes? To coordinate all these design details within

half a dozen subassemblies, we held focused integration

meetings during the design phase. Each team was able to

communicate (and show) what was happening at critical

interfaces and decide what adjustments were needed. This

enhanced collaboration and ensured the prototypes came

together cleanly.

Enhancing collaboration within Agile methodologies

allows us to deliver tangible value to the stakeholders

more often. Breaking up phases into smaller increments

and measuring actual work completed as we go helps us

understand what is remaining on a project. Perhaps more

importantly, though, it helps us predict and communicate

a more accurate completion date as the project unfolds.

This provides our stakeholders insight into the product

development process every step of the way and allows

our teams to react early to issues identified by the

stakeholders. But how can we predict and communicate

when we will be done if we are following Agile?

Since uncrewed systems are following similar paths

toward regulation that enabled safe product launches

in the aerospace and medical device industries, pairing

the flexibility of Agile techniques with proven strategies

from traditional hardware development is the recipe for

success. Traditional project management approaches

are still leveraged to continuously maintain a high-level

program schedule and resource plan, which is updated and

communicated at each sprint review. Formal design reviews

and other gating milestones ensure alignment is maintained

among all stakeholders prior to moving on to the next

phase of the project.

All of these collaborative tools give us and our stakeholders

the rapport and confidence to communicate effectively,

particularly when changes are brought up on a project.

Applying Agile to Uncrewed Vehicle Hardware Development Challenges | 9

HANDLING CHANGE

Change is a given within product development, and

it is critical to balance technical improvements while

maintaining project budget and schedule. Dealing with

change on a project with hardware elements can be even

more troublesome because of the high cost of change

as the project unfolds. Leveraging an Agile systems

engineering approach ensures critical artifacts such as

requirements, interfaces, and risks are monitored and

maintained to ensure project success. Embracing change

is about assessing and understanding the impact any

given change has on the project objectives and product

capabilities in order to make informed decisions while

working within the project constraints.

ALTEN Technology handles change by empowering our

teams to identify and communicate issues as soon as they

arise. The incremental development approach (discussed

previously) is a mechanism for teams to address changes

and avoid building up too much technical debt. Addressing

change as early as possible leads to a lower development

cost over the life cycle of the project (Figure 5).

FIGURE 5. COST OF CHANGE OVER THE PROJECT LIFE CYCLE9

Monitoring scope change is a critical task that ALTEN

Technology handles because it can affect all aspects of a

project. The project manager closely monitors scope using a

variety of Agile tools. Visual task boards are the main tool of

choice, where individual tasks are planned and tracked. The

high-level work breakdown structure (backlog) is roughly

planned into future sprints. Every month, we plan the goals

for the next two to four sprints (one to two months) in

preparation for detailed biweekly sprint planning sessions.

The large backlog items are then broken down into well-

defined tasks that engineers can complete. By using the

visual task board in this way, any new scope requests are

added to the board, where it’s easier to see how the new

scope fits in with the existing tasks. Stakeholders are

encouraged to review the visual task board as well. We can

then flexibly assess if the new scope can fit into the existing

sprint plan or if an existing task should be deprioritized

(delayed) or removed to make room for the new task within

the existing project constraints.

However, one way Agile for hardware differs from

software is we don’t require tasks to be completed within

a given sprint. This is the goal, of course, but if a task is

not completed at the end of a sprint, we don’t want to

incentivize teams to artificially “complete” the task by

shortcutting technical excellence or arbitrarily splitting the

acceptance criteria just to “move a card across the board.”

Uncrewed systems programs are complex enough as

they are, and we don’t want to introduce artificial process

requirements that could make them harder to keep track of.

As a team settles into a new project, they will find both new

ways to work together and new ways to have conflicts.

Sprint retrospectives are a wonderful tool to improve the

process of product development because it will be slightly

different for each group of people brought together to

form a product development team. In a retrospective, the

team has a roundtable discussion about what did and didn’t

go well on the project and possible ways to improve the

process for the next sprint. A basic expectation exists that

there will be friction along the way, and the retrospective

is a way to expose it and improve upon it. The process itself

is hardwired to embrace change, with benefits to improved

team communication, efficiency, and cohesiveness.

MANAGING COMPLEXITY

As projects grow in size, they also grow in complexity.

But why is it that a project that is twice as large (in staff,

budget, or number of features) always feels much more

than twice as complex to deal with?

Think of a project as a group of “elements,” whether

people, requirements, features, or components. Each

of those elements has a relationship with a number of

other elements. As the number of elements grows, the

number of possible relationships grows even more. This

Applying Agile to Uncrewed Vehicle Hardware Development Challenges | 10

is a measure of the project’s complexity (see Figure 6),

and both the elements and the relationships have to

be managed as well. This is one reason why projects

can easily be underestimated by simply scaling smaller

projects. Scaling a project does not incorporate the added

complexity of the interactions within a larger project.

Uncrewed vehicles are a great example of a lot of

complexity in a small package. There are a number

of interacting subsystems, various technologies, and

different engineering disciplines that all must work

together to produce any uncrewed vehicle. In addition,

there are related systems, such as ground control

stations, support equipment, and operators, that add to

the complexity. So how can Agile be used to manage the

complexity of an uncrewed vehicle project?

Each of our projects has a systems engineer (sometimes,

more than one) who acts as the product owner for the

team. Briefly, in Scrum, the product owner is responsible

for defining the product backlog (requirements), managing

and prioritizing the product backlog, making sure the team

produces the most value at any given time, and keeping

everyone aligned on the interpretation of the backlog

items.2

FIGURE 6: AS A PROJECT GROWS IN SIZE,
IT GROWS IN COMPLEXITY

FIGURE 7: A SYSTEMS ENGINEER MANAGES THE SYSTEM11

Our systems engineers also take on additional

responsibilities in a project. They conduct or assign

trade studies, guide the team to a common product

architecture, determine and coordinate the definition of

critical interfaces, and build a model of the system (via

model-based systems engineering) so that it is easier to

understand and measure the effect of making changes.10

Why are systems engineers so critical in managing

project complexity? Because they do the jobs everyone

assumes someone else is doing (Figure 7). Collaborative

Empowered Teams is one of our key Agile principles.

When engineers are focused on their particular

disciplines, in a particular subsystem, they don’t have

the bandwidth to look at the whole system and ensure it

makes sense. Product architectures often tend to grow

organically, which may make sense at first, but later on it

becomes clear the product doesn’t make sense as a whole,

even though many of the individual elements do. This is a

symptom of project silos or a lack of coordination at the

top levels of the project.

SE

Requirements
Management

Technical
Leadership

Trade Studies

Architecture

Interfaces

Technical Risk
Management

Failure Modes

System Design
Reviews

Integration

Verification
Planning

Having an individual tasked with engineering the system

(the systems engineer) frees up project engineers to focus

on their disciplines and subsystems. The systems engineer

arranges collaboration meetings with team leads with

the goal of fleshing out the system-level concerns. Early

on, these meetings will focus on decomposing, analyzing,

and understanding the requirements. Trade studies will

be coordinated to determine the best architecture for the

system or various subsystems and major components.

The focus will then shift to architecture and interface

definition. Having a systems engineer onboard ensures

that these activities occur at the appropriate times,

that they are coordinated to follow an overall plan, and

that there is an impartial arbitrator when difficulties or

conflicts arise.

A visual task board is another way to manage project

complexity. As a project ramps up, the number of tasks

to be tracked increases tremendously. It is a common

occurrence for individuals to end up assigned to multiple

tasks simultaneously. When that happens, they become

extremely inefficient at all of them.12

Applying Agile to Uncrewed Vehicle Hardware Development Challenges | 11

The visual task board shows what each team member is

working on and allows us to set work in progress limits

(see Figure 1 for a representation of a visual task board).

We also have a set of acceptance criteria for each task so

we (and the assignee) have a common definition of when

it is “done.” Not almost done, not mostly done, not 90

percent done, but DONE.

The measure of progress is not how many tasks you

have started; it is how many tasks you have finished.

Additionally, it is not uncommon for a task to become

blocked so that the assignee cannot make useful progress

anymore. This is also tracked and expedited so that

blocks don’t prevent other tasks from being completed or

languish in obscurity until they have a potential impact on

the project. Using visual task board software, we can also

assign tasks to releases, subsystems, and disciplines. This

allows filtering and prioritizing of the workload to occur

across the project scope.

All of these elements of a visual task board make

managing the project far less complex by limiting the

amount of information that needs to be processed at

any given time. Everyone has the same understanding of

what is happening on the project, what happens next, and

where the issues are. In addition, we empower our teams

through the visual task board. While the project manager

and systems engineer work together to set sprint goals

(in the context of the overall project), the leads and team

members are in charge of decomposing backlogs into

tasks, defining them in detail, and providing estimates. The

team members move their cards as they work on them,

rather than being micromanaged by the project manager.

This invests the team in the purposeful progression of

the project because all team members can see their

contribution on the board.

We have also been successful in managing project

complexity through staggered subsystem development.

It is often impractical to ramp up a large team and

start working on all subsystems simultaneously. Hiring

considerations, a massive burn rate, and project risk can

hinder such a team. Instead, a core multidisciplinary team

(as described in the Organizing People section) can be

assembled to work on all subsystems. The trick is to start

with a requirements and architecture phase, develop

a really good understanding of the system needs, and

address higher-risk or longer lead-time subsystems first.

With the architecture and key interfaces defined, the core

team can get to work on one subsystem at a time.

These subsystems must fit within the original architecture

and respect the interfaces. And once subsystem

development starts to ramp down, another subsystem

begins to ramp up. The core team moves from subsystem

to subsystem in this manner. On more complex

subsystems, we can bring in additional team members.

On simpler subsystems, we may run more than one

subsystem in parallel. All the while, we are demonstrating

the value of each subsystem and making tangible progress

along the way without having to have a fully operational

system. The systems engineer is there to make sure that

subsystem designs are coordinated with the system

architecture and interfaces.

The drawback to staggered subsystem development using

a core team is that it may seem to take longer than running

a full project team from the start. However, the core team

approach will likely produce a higher-quality product with

fewer integration issues because the team members will

be the experts in the system as a whole, having worked

on every aspect of it. The staggered approach allows for a

more reasonable burn rate and a lower risk profile for the

project as a whole.

REDUCING RISK

In terms of complexity, risks move in tandem with project

growth. Some of these risks will be obvious at the outset,

and others may be discovered along the way.

Some risks can affect the project’s success, while others

affect the product itself. Either way, the project team will

need to deal with risks as the project progresses.

The question is, Do you anticipate and deal with the

risks preemptively or let things unfold and handle risks

as you go?

 We are big advocates of risk-based product development

and believe that Agile points us in this direction as well.

But why? Why not just let the project unfold and deal with

things as they come up? Isn’t that Agile?

Applying Agile to Uncrewed Vehicle Hardware Development Challenges | 12

Letting risks impose themselves upon the project is a

recipe for chaos, confusion, and expensive and time-

consuming rework. It makes for a dissatisfied project

team because they go from fighting one fire to the next

and for unhappy stakeholders who do not understand

why the project can never stay on track. Just-in-time risk

management is decidedly un-Agile for all these reasons.

We use Agile principles to reduce risks by identifying and

tracking them right from the beginning of the project.

Risks are collaboratively brainstormed by the team,

prioritized, and shared with the stakeholders. Each risk

has a responsible team member, and tasks are assigned to

them to complete to mitigate the risk. Risks are regularly

reviewed and their progress tracked. For significant risks,

the project may even be restructured to deal with “project

killers”—those risks that, if realized, could potentially

derail the project.

For example, imagine a new technology that may not yet

have become a product but still needs to be incorporated

into a relatively low-risk system design. Perhaps it’s a

new type of sensor that needs to be integrated into an

uncrewed platform. While the project may seem low

risk as a whole, if the sensor subsystem fails, the whole

project fails. In this case, it is probably worthwhile to

restructure the project to get a working prototype of

the sensor subsystem. The team will learn a lot along the

way about the performance and limitations of the sensor

subsystem, and stakeholders will have information in hand

to determine if it is still worthwhile to pursue the project

as a whole. Yes, this takes an investment up front, but

imagine if the project were turned on with a full team from

the outset. A lot of time and effort would be wasted if the

sensor subsystem were built in and ultimately found not

to work as needed six months into a full-team effort.

As mentioned earlier, project risks are brainstormed right

from the beginning. These risks are added to the risk

tracker, a spreadsheet that lists and prioritizes the risks in

a single place. Without it, we find risk concerns are spread

throughout a project, often in people’s heads. The team

(and stakeholders) have little understanding of the risk

profile of the project and where the responsibility lies for

dealing with the various risks. The risk tracker makes all

this obvious to everyone, including the stakeholders.

Having a risk tracker is nice, but it is useless if it does not

positively influence the project. Each risk has an assignee

who is responsible for following through with the chosen

risk responses and reporting regularly to the team on

progress. Often, this is a full-time task, so it is assigned as

a task(s) on our visual task board. That way, it is clear that

the risks are being addressed and time has been allocated

to do so.

A summary of the risk tracker is presented at every

sprint review. We present the following at sprint reviews

regarding risks: review any changes to risks (new risks,

closed risks, or risks that change priority level), review

any risks that are coming due, and review the risk charts

(Figures 8 and 9).

FIGURE 8:
RISK MATRIX CHART

FIGURE 9:
RISK BURNDOWN CHART

Applying Agile to Uncrewed Vehicle Hardware Development Challenges | 13

The risk matrix gives a visual snapshot of the current risks

that potentially could affect the project. In the example

above, although most risks are in the lower left, they are

not the ones to be overly concerned about. One should be

very concerned, however, by the three risks in the upper

right. The red risks have the potential to derail the project

and resources should be applied to close them as quickly as

possible.

The risk burndown chart is an ongoing history of the

project’s risks. Initially, these charts aren’t too interesting—

they just show the number of risks at each level. However,

as sprints go by, the charts should start to show a pattern

of risks burning down. Ideally, the higher risk items

are burned down first because they have the greatest

potential impact to the project. If the trend does not look

encouraging, this may be the first sign a project is out of

control and serious discussions need to be had.

Thus, the status, number, and priority of risks are never far

from anyone’s mind. By evaluating the project’s changing

risk profile at each sprint review, informed decisions can be

made in a proactive manner, often before risks morph into

major project issues. This gives the team a crucial bit of

breathing room to thoughtfully consider options and then

redirect tasks in the sprint planning meeting. The team

knows who is working on it, how long it is expected to take,

and what the definition of “done” is. Risks are no longer

lurking in a project waiting to derail it at inopportune

times.

CHALLENGES

By applying the four Agile product development principles,

we demonstrate value to stakeholders often, empower

the team to work in a collaborative way with all partners,

remain flexible to change when necessary, and maintain

a high level of technical excellence. All of this allows us to

effectively overcome the many challenges that product

development throws at us.

We have explored five challenges faced by uncrewed

systems programs and how we deal with them in an Agile

manner. The challenge of organizing people is handled

using a core team that is scalable and sets the stage for

collaborative empowered teams. Enhancing collaboration

is a challenge that is met with incremental processes,

from the organizational quarterly road map down to the

project daily stand-ups. By demonstrating value within

each of these cycles, collaboration is enhanced within the

team and with stakeholders. The challenge of handling

change is met via visual task boards, sprint reviews,

and sprint retrospectives. The team is empowered to

bring up potential changes, and the flexibility to change

is built into our product development philosophy and

processes. Managing complexity is a challenge we tackle

by embedding a product owner (systems engineer) within

each program. The product owner handles the system-

level tasks that others don’t have time to consider. By using

visual task boards and staggered subsystem development,

value is demonstrated often, and the amount of

information that has to be processed at any given time

remains manageable. Finally, the challenge of reducing risk

is dealt with by empowering teams to identify risks, having

a centralized risk tracker, and aggressively burning down

risks by priority.

The quick feedback loops of incremental development via

modified Scrum are imperative as technology evolves at

an increasing pace in the uncrewed systems market and

organizations need to be able to react quickly to keep up.

Adopting Agile techniques and a continuous improvement

approach enables organizations to maintain focus on new

technology innovation, while not losing sight of key goals

to get a product through regulatory requirements and to

market in an increasingly competitive environment. The

shift to more commercial market demand and supporting

emerging user needs that have not been considered before

will be key to being competitive and first to market.

Applying Agile to Uncrewed Vehicle Hardware Development Challenges | 14

1 Kent Beck et al., “Manifesto for Agile Software Development,” 2001, accessed November 9, 2017, https://agilemanifesto.org.

2 K. Schwaber and J. Sutherland, ”The Scrum Guide,” 2017, in Scrum Alliance, November 2017, from https:/ www.

scrumalliance.org/learn-about-scrum/the-scrum-guide.

3 Todd Mosher, James Kolozs, Carissa Colegrove, and Erica Wilder, “Agile Hardware Development Approaches Applied

to Space Hardware,” 2018 AIAA Space and Astronautics Forum and Exposition, Orlando, FL. https:/arc.aiaa.org/

doi/10.2514/6.2018-5233.

4 Backblaze, Inc., “Application of Scrum Methods to Hardware Development,” 2015, Backblaze.com, accessed November 9,

2017, https://www.backblaze.com/blog/wp-content/uploads/2015/08/Scrum-for-Hardware-Development-V3.pdf.

5 E. Graves, “Applying Agile to Hardware Development (parts 1–7),” Playbook Blog, accessed November 9, 2017, https://www.

playbookhq.co/blog/agile-hardware-development.

6 N. Ovesen, “The Challenges of Becoming Agile: Implementing and Conducting Scrum in Integrated Product Development,”

(PhD diss., Aalborg University, 2012).

7 P. Reynisdottir, “Scrum in Mechanical Product Development: Case Study of a Mechanical Product Development Team Using

Scrum” (PhD diss., Chalmers University of Technology, 2013).

8 K. Thompson, “Agile Processes for Hardware Development,” 2015, cPrime.com, accessed November 9, 2017, https://www.

cprime.com/resource/white-papers/agile-processes-for-hardware-development/.

9 A Guide to the Project Management Body of Knowledge, 5th ed., Chapter 2.4.1 (Newtown Square, PA: Project Management

Institute, 2013).

10 N. Kass and J. Kolozs, 2016, “Getting Started with MBSE in Product Development,” INCOSE International Symposium 26:

526–41, https:/onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.2016.00176.x.

11 C. Black [now C. Colegrove], 2017, “The Impact a Systems Engineer Can Make in Medical Device Development,” INCOSE

International Symposium 26: 1584–96, https:/onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.2016.00247.x.

12 M. Cohn, Agile Estimating and Planning (Upper Saddle River, NJ: Prentice Hall, 2005).

REFERENCES

