COMMERCIAL TRANSPORTATION

Energy

The analysis indicated several structural issues for two battery packs. The team proposed several design recommendations that will help our client modify its design to ensure structural integrity.

KEY DATA

Team Size: 1 Engineer
Time: May–June 2021
Location: Greensboro, NC
Project Package

KEY TOOLS & TECHNOLOGIES

CAE Tools: ANSA, META, and Nastran

BATTERY PACK STATIC AND DYNAMIC ANALYSIS

OVERVIEW

- Our client is developing a family of battery packs. These packs must operate reliably in a dynamic environment—the undercarriage of a truck. The structure must, therefore, survive dynamic loads
- Our client sought to validate the design via computer simulation before launching production

PROJECT DETAILS

The emphasis of the finite element analysis is on the behavior of the enclosure of the battery packs as the main load-bearing element. The team performed the following set of analyses:

- Inertia load—Linear static analysis
 Structural analysis of battery cell strut enclosure to validate design and identify areas of improvement
- Modal analysis—Identification of resonance frequencies and the root cause
- Modal transient analysis—Durability analysis of battery cell enclosure; HVAC system mounts with respect to proving ground duty cycle
- UN38.3 (Testing Requirements for Lithium-Ion Cells/Batteries)
 - > 38.3, T4—Shock Test: Analysis of entire battery pack structure subjected to half-sine shock peak and identification of structural issues
 - > 38.3, T3—Vibration Test: Frequency response analysis of entire battery pack structure at 2 g excitation from 2 Hz to 200 Hz; identify key resonance frequencies and provide recommendations for improving the design concept

